Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering
نویسندگان
چکیده
In the search for mechanisms of high-temperature superconductivity it is critical to know the electronic spectrum in the pseudogap phase from which superconductivity evolves. The lack of angle-resolved photoemission data for every cuprate family precludes an agreement as to its structure, doping and temperature dependence and the role of charge ordering. Here we show that, in the entire Fermi-liquid-like regime that is ubiquitous in underdoped cuprates, the spectrum consists of holes on the Fermi arcs and an electronic pocket. We argue that experiments on the Hall coefficient identify the latter as a permanent feature at doped hole concentration x > 0.08-0.10, in contrast to the idea of the Fermi surface reconstruction via charge ordering. The longstanding issue of the origin of the negative Hall coefficient in YBCO and Hg1201 at low temperature is resolved: the electronic contribution prevails as mobility of the latter (evaluated by the Dingle temperature) becomes temperature independent, while the mobility of holes scattered by the short-wavelength charge density waves decreases.
منابع مشابه
Gap and pseudogap evolution within the charge-ordering scenario for superconducting cuprates
We describe the spectral properties of underdoped cuprates as resulting from a momentumdependent pseudogap in the normal state spectrum. Such a model accounts, within a BCS approach, for the doping dependence of the critical temperature and for the two-parameter leading-edge shift observed in the cuprates. By introducing a phenomenological temperature dependence of the pseudogap, which finds a ...
متن کاملPolaron coherence as origin of the pseudogap phase in high temperature superconducting cuprates
Within a two-component approach to high T c copper oxides including polaronic couplings, we identify the pseudogap phase as the onset of polaron ordering. This ordering persists in the superconducting phase. A huge isotope effect on the pseudogap onset temperature T * is predicted and in agreement with experimental data. The anomalous temperature dependence of the mean square copper-oxygen ion ...
متن کاملCollective transport and optical absorption near the stripe criticality
There are by now several experimental evidences that the peculiar properties of the cuprates are controlled by a Quantum Critical Point (QCP), located near (actually slightly above) the optimal doping δ = δopt [1]. Already several years ago some of us proposed [2] that the pseudogap region of the underdoped cuprates is characterized by the pronounced tendency to form (local) spatial ordering (t...
متن کاملWeak phase separation and the pseudogap in the electron-doped cuprates
– We study the quantum transition from an antiferromagnet to a superconductor in a model for electronand hole-doped cuprates by means of a variational cluster perturbation theory approach. In both cases, our results suggest a tendency towards phase separation between a mixed antiferromagnetic-superconducting phase at low doping and a pure superconducting phase at larger doping. However, in the ...
متن کاملThermodynamics and phase diagram of high temperature superconductors.
Thermodynamic quantities are derived for superconducting and pseudogap regimes by taking into account both amplitude and phase fluctuations of the pairing field. In the normal (pseudogap) state of the underdoped cuprates, two domains have to be distinguished: near the superconducting region, phase correlations are important up to temperature T(phi). Above T(phi), the pseudogap region is determi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015